An axiomatic study of objective functions for graph clustering
نویسندگان
چکیده
We investigate axioms that intuitively ought to be satisfied by graph clustering objective functions. Two tailored for graph clustering objectives are introduced, and the four axioms introduced in previous work on distance based clustering are reformulated and generalized for the graph setting. We show that modularity, a standard objective for graph clustering, does not satisfy all these axioms. This leads us to consider adaptive scale modularity, a variant of modularity, that does satisfy the axioms. Adaptive scale modularity has two parameters, which give greater control over the clustering. Standard graph clustering objectives, such as normalized cut and unnormalized cut, are obtained as special cases of adaptive scale modularity. We furthermore show that adaptive scale modularity does not have a resolution limit. In general, the results of our investigation indicate that the considered axioms cover existing ‘good’ objective functions for graph clustering, and can be used to derive an interesting new family of objectives.
منابع مشابه
Axioms for graph clustering quality functions Axioms for graph clustering quality functions
We investigate properties that intuitively ought to be satisfied by graph clustering quality functions, i.e. functions that assign a score to a clustering of a graph. Graph clustering, also known as network community detection, is often performed by optimizing such a function. Two axioms tailored for graph clustering quality functions are introduced, and the four axioms introduced in previous w...
متن کاملAxioms for graph clustering quality functions
We investigate properties that intuitively ought to be satisfied by graph clustering quality functions, that is, functions that assign a score to a clustering of a graph. Graph clustering, also known as network community detection, is often performed by optimizing such a function. Two axioms tailored for graph clustering quality functions are introduced, and the four axioms introduced in previo...
متن کاملA Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach
In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...
متن کاملA Multi-Objective Approach to Fuzzy Clustering using ITLBO Algorithm
Data clustering is one of the most important areas of research in data mining and knowledge discovery. Recent research in this area has shown that the best clustering results can be achieved using multi-objective methods. In other words, assuming more than one criterion as objective functions for clustering data can measurably increase the quality of clustering. In this study, a model with two ...
متن کاملA partition-based algorithm for clustering large-scale software systems
Clustering techniques are used to extract the structure of software for understanding, maintaining, and refactoring. In the literature, most of the proposed approaches for software clustering are divided into hierarchical algorithms and search-based techniques. In the former, clustering is a process of merging (splitting) similar (non-similar) clusters. These techniques suffered from the drawba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1308.3383 شماره
صفحات -
تاریخ انتشار 2013